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Begin at the beginning, and go on till you come to the end. Then, .....

Lewis Carroll, Alice’s Adventures in Wonderland
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Problem

Problem

Motivation: In credit risk, in mathematical finance, one works with random times
which represent the default time. Many studies are based on the intensity process:
starting with a reference filtration F, the intensity process of τ is the F predictable
increasing process Λ such that

11τ≤t − Λt∧τ

is a G-martingale, where Gt = ∩ϵ>0Ft+ϵ ∨ σ(τ ∧ (t+ ϵ)).

Then, the problem is : given Λ, construct a random time τ which admits Λ as
intensity.
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Problem

A classical construction is: assuming that the F adapted increasing process Λ is
continuous, extend the probability space (Ω,F,P) so that there exists a random
variable Θ, with exponential law, independent of F∞ and define
τ := inf{t : Λt ≥ Θ}.

Then,
P(τ > t|Ft) = P(Λt < Θ|Ft) = e−Λt

Noting that any Gt measurable random variable Yt satisfies

Yt11{t<τ} = yt11{t<τ}

where yt is Ft adapted, it follows that, for X any integrable FT -measurable r.v.,

E(X11{T<τ}|Gt) = 11t<τE(XeΛt−ΛT |Ft)

A consequence is that 11t<τe
Λt is a G martingale. The martingale property of M is

easily obtained.

Moreover, under this construction, one can show that any F martingale is a G
martingale: this is the so-called immersion hypothesis.
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Problem

Our goal is to provide other constructions. One starts with noting that, in general,

Gt = P(τ > t|Ft)

is a supermartingale (called the Azema supermartingale) with multiplicative
decomposition Gt = NtDt, where N is a local martingale and D a decreasing
predictable process. Assuming that G does not vanishes, we set Dt = e−Λt . Then,
assuming that Λ is continuous, the Doob-Meyer decomposition of G is

dGt = e−ΛtdNt − ZtdΛt = dmt − dAt

It follows that

11τ≤t −
∫ t∧τ

0

dAs

Zs
= 11τ≤t −

∫ t∧τ

0

dΛs

is a martingale, hence Λ is the intensity of τ .
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Problem

Let (Ω,F,P) be a filtered probability space, Z a supermartingale valued in ]0, 1].
Construct, on the canonical extended space (Ω× [0,∞]), a probability Q and a
random time τ (it will be the canonical map) such that

1. restriction condition Q|F∞ = P|F∞ (we shall call Q an extension of P)

2. projection condition Q[τ > t|Ft] = Zt
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Problem

Using the multiplicative decomposition of a positive supermartingale, the problem
can be written as:

Problem (⋆): let (Ω,F,P) be a filtered probability space, Λ an increasing
predictable process, N a non-negative local martingale such that

0 < Nte
−Λt ≤ 1

Construct, on the canonical extended space (Ω× [0,∞]), a probability Q such that

1. restriction condition Q|F∞ = P|F∞

2. projection condition Q[τ > t|Ft] = Nte
−Λt

We recall that τ is the canonical map. We shall note P(X) := EP(X).
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Problem

Föllmer’s measure

One may think that a solution of the problem (⋆) is given by the Föllmer measure
associated with Z, defined as

QF[F ] = P[
∫ ∞

0

F (s, ·)ZsdΛs], F ∈ B[0,∞]⊗F∞.

which satisfies the projection condition.
In order to be a solution of the problem (⋆), QF must be an extension of P, i.e.,

P[A] = QF[A] = P[IA
∫ ∞

0

ZsdΛs], A ∈ F∞.

This is equivalent to the condition:
∫∞
0
ZsdΛs ≡ 1. The last condition combined

with the assumption Z∞ = 0 implies, from the Doob-Meyer decomposition of Z
written in differential form as dZt = e−ΛtdNt − ZtdΛt:

Zt = P[
∫ ∞

0

ZsdΛs|Ft]−
∫ t

0

ZsdΛs = 1−
∫ t

0

ZsdΛs

i.e., Zt = e−Λt
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Problem

Particular case: Z = e−Λ.

In that case a solution (the Cox solution) is

τ = inf{t : Λt ≥ Θ}

where Θ is a random variable with unit exponential law, independent of F∞, or in
other words Q = QC where, for A ∈ F∞:

QC(A ∩ {s < τ ≤ t}) = P
(
11A

∫ t

s

e−ΛudΛu

)
so that

QC(τ > θ|Ft) = e−Λθ , for t ≥ θ
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Problem

Jeanblanc, M. and Song, S. (2010)
Explicit Model of Default Time with given Survival Probability. Stochastic
Processes and their Applications
Default times with given survival probability and their F-martingale decomposition
formula. Stochastic Processes and their Applications

Nikeghbali, A. and Yor, M. (2006) Doob’s maximal identity, multiplicative
decompositions and enlargements of filtrations, Illinois Journal of Mathematics, 50,
791-814. In that paper, given a supermartingale of the form Zt =

Nt

sups≤t Ns
where

N is a continuous local martingale which goes to 0 at infinity, the authors show
that P(g > t|Ft) = Zt, where g = sup{t : Zt = 1}.

Li, L. and Rutkowski, M. (2010) Constructing Random Times Through
Multiplicative Systems, Preprint.

In that paper, the authors give a solution to the problem (⋆), based on Meyer,
P.A. (1967): On the multiplicative decomposition of positive supermartingales.
In: Markov Processes and Potential Theory, J. Chover, ed., J. Wiley, New York, pp.
103–116.
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Problem

Outline of the talk

• Increasing families of martingales

• Semi-martingale decompositions

• Predictable Representation Theorem

• Exemple
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Problem

The link between the supermartingale Z and the conditional law Q(τ ∈ du|Ft) for
u ≤ t is: Let Mu

t = Q(τ ≤ u|Ft), then M is increasing w.r.t. u and

Mu
u = 1− Zu

Mu
t ≤ M t

t = 1− Zt

(Note that, for t < u, Mu
t = E(1− Zu|Ft)).

The solution of problem (⋆) is not unique, mainly because the knowledge of the
survival probability Q(τ > t|Ft) does not contain enough information to
reconstruct the whole conditional law, i.e. Q(τ ∈ du|Ft).

Solving the problem (⋆) is equivalent to find a family Mu

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 12



Family iMZ

Family iMZ

An increasing family of positive martingales bounded by 1− Z (in short
iMZ) is a family of processes (Mu : 0 < u <∞) satisfying the following conditions:

1. Each Mu is a càdlàg P-F martingale on [u,∞].

2. For any u, the martingale Mu is positive and closed by Mu
∞ = limt→∞Mu

t .

3. For each fixed t, 0 < t ≤ ∞, u ∈ [0, t] →Mu
t is a right continuous

increasing map.

4. Mu
u = 1− Zu and Mu

t ≤M t
t = 1− Zt for u ≤ t ≤ ∞.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 13



Family iMZ

Given an iMZ , let duMu
∞ be the random measure on (0,∞) associated with the

increasing map u→Mu
∞. The following probability measure Q is a solution of the

problem (⋆)

Q(F ) := P

(∫
[0,∞]

F (u, ·)
(
M0

∞δ0(du) + duM
u
∞ + (1−M∞

∞ )δ∞(du)
))

The two properties for Q:

• Restriction condition: For B ∈ F∞,

Q(B) = P

(
IB
∫
[0,∞]

(M0
∞δ0(du) + duM

u
∞ + (1−M∞

∞ )δ∞(du))

)
= P[B]

• Projection condition: For 0 ≤ t <∞, A ∈ Ft,

Q[A ∩ {τ ≤ t}] = P[IAM t
∞] = P[IAM t

t ] = Q[IA(1− Zt)]

are satisfied.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 14



Family iMZ

Notice that the advantage to consider an unknown iMZ instead of an unknown Q is
that iMZ is a process which can be constructed on the initial space (Ω,F,P), while
Q is probability on an unknown space.

A solution of the (⋆)-problem exists if and only if an iMZ exists.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 15



Constructions of iMZ

Constructions of iMZ

Hypothesis (z)

1. Z0 = 1 and Λ is continuous.

2. For all 0 < t <∞, 0 ≤ Zt < 1, 0 ≤ Zt− < 1 (strictly smaller than 1).

The simplest iMZ

Assume conditions (z). The family

Mu
t := (1− Zt) exp

(
−
∫ t

u

Zs

1− Zs
dΛs

)
0 < u <∞, u ≤ t ≤ ∞,

defines an iMZ , called basic solution. We note that

dMu
t = −Mu

t−
e−Λt

1− Zt−
dNt, 0 < u ≤ t <∞.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 16



Constructions of iMZ

It follows that, for A ∈ B([t,∞[)

Q(τ ∈ A|Ft) =

∫
A

ZsEt(s)dΛs

where Et(s) :=
1−Zt

1−Zs
exp−

∫ t

s
Zu

1−Zu
dΛu.

Note that Mu
t = mtAu where m is a martingale and A increasing.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 17



Constructions of iMZ

Other solutions Let us recall that, to construct an iMZ , we should respect four
constraints :

i. Mu
u = (1− Zu)

ii. 0 ≤Mu

iii. Mu ≤ 1− Z

iv. Mu ≤Mv for u < v

These constraints are particularly "easy" to handle if Mu are solutions of a SDE:
The constraint i indicates the initial condition;
the constraint ii means that we must take an exponential SDE;
the constraint iv is a comparison theorem for one dimensional SDE,
the constraint iii can be handled by local time as described in the following result :

Let m be a (P,F)-local martingale such that mu ≤ 1− Zu. Then,
mt ≤ (1− Zt) on t ∈ [u,∞) if and only if the local time at zero of
m− (1− Z) on [u,∞) is identically null.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 18



Constructions of iMZ

Generating equation when 1− Z > 0

Hypothesis (zz ):

1. Z0 = 1 and Λ is continuous.

2. For all 0 < t <∞, 0 ≤ Zt < 1, 0 ≤ Zt− < 1.

3. All P-F martingales are continuous.

Assume (zz). Let Y be a (P,F) local martingale and f be a bounded Lipschitz
function with f(0) = 0. For any 0 ≤ u <∞, we consider the equation

(♮u)

 dXt = Xt

(
− e−Λt

1− Zt
dNt + f(Xt − (1− Zt))dYt

)
, u ≤ t <∞

Xu = x

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 19



Constructions of iMZ

Generating equation when 1− Z > 0

Hypothesis (zz ):

1. Z0 = 1 and Λ is continuous.

2. For all 0 < t <∞, 0 ≤ Zt < 1, 0 ≤ Zt− < 1 (strictly smaller than 1).

3. All P-F martingales are continuous.

Assume (zz). Let Y be a (P,F) local martingale and f be a bounded Lipschitz
function with f(0) = 0. For any 0 ≤ u <∞, we consider the equation

(♮u)

 dXt = Xt

(
− e−Λt

1− Zt
dNt + f(Xt − (1− Zt))dYt

)
, u ≤ t <∞

Xu = x

Let Mu be the solution on [u,∞) of the equation (♮u) with initial condition
Mu

u = 1− Zu. Then, (Mu, u ≤ t <∞) defines an iMZ .

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 20



Constructions of iMZ

A remark

Our method remains valid if in SDE(♮)
dMt =Mt

(
− e−Λt

1−Zt
dNt + f(Mt − (1− Zt))dYt

)
, the term f(Mt − (1− Zt)) is

replaced by some more general function f(Mt − (1− Zt),Mt, t, ω) such that

|f(Mt − (1− Zt),Mt, t, ω)| ≤ K|Mt − (1− Zt)|

.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 21



Constructions of iMZ

Proof

• Inequality Mu ≤ 1−Z on [u,∞) is satisfied if the local time of ∆ =Mu − (1−Z)

at zero is null. This is the consequence of the following estimation:

d⟨∆⟩t = ∆2
t

(
e−Λt

1− Zt

)2

d⟨N⟩t +M2
t f

2(∆t)d⟨Y ⟩t − 2∆t
e−Λt

1− Zt
Mtf(∆t)d⟨N,Y ⟩t

≤ 2∆2
t

(
e−Λt

1− Zt

)2

d⟨N⟩t + 2M2
t f

2(∆t)d⟨Y ⟩t

≤ 2∆2
t

(
e−Λt

1− Zt

)2

d⟨N⟩t + 2M2
t K

2∆2
td⟨Y ⟩t

From this, we can write∫ t

0

I{0<∆s<ϵ}
1

∆2
s

d⟨∆⟩s <∞, 0 < ϵ, 0 < t <∞

and get the result according to Revuz-Yor.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 22



Constructions of iMZ

• Inequality Mu ≤Mv on [v,∞) when u < v. The comparison theorem holds for
SDE(♮). We note also that Mu and Mv satisfy the same SDE(♮) on [v,∞). So,
since Mu

v ≤ (1− Zv) =Mv
v , Mu

t ≤Mv
t for all t ∈ [v,∞).

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 23



Constructions of iMZ

Comments: in the case N = 1, one obtains dXt = Xt (f(Xt − (1− Zt))dYt) , u ≤ t <∞
Xu = x

In that case, the Azema supermartingale is decreasing. This is a caracterization of
pseudo-stopping times (i.e. times such that, for any BOUNDED F martingale m,
one has

E(mτ ) = m0

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 24



Constructions of iMZ

Balayage formula when 1− Z can reach zero

We introduce Z = {s : 1− Zs = 0} and, for t ∈ (0,∞), the random time

gt := sup{0 ≤ s ≤ t : s ∈ Z}

Hypothesis(Z) The set Z is not empty and is closed.
The measure dΛ has a decomposition dΛs = dVs + dAs where V,A are continuous
increasing processes such that dV charges only Z while dA charges its
complementary Zc.
Moreover, we suppose

I{gt≤u<t}

∫ t

u

Zs

1− Zs
dAs <∞

for any 0 < u < t <∞.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 25



Constructions of iMZ

We suppose that Λ is continuous, Z0 = 1 and Hy(Z). We introduce

Mu
t = I{gt≤u} exp

(
−
∫ t

u

Zs

1− Zs
dAs

)
(1− Zt), 0 < u <∞, u ≤ t ≤ ∞.

The family (Mu : 0 ≤ u <∞) defines an iMZ . Moreover, for 0 < u ≤ t ≤ ∞

Mu
t = (1− Zu)−

∫ t

u

I{gs≤u} exp

(
−
∫ s

u

Zv

1− Zv
dAv

)
e−ΛsdNs

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 26



Constructions of iMZ

Proof indication

(Balayage Formula.) Let Y be a continuous semi-martingale and define

gt = sup{s ≤ t : Ys = 0},

with the convention sup{∅} = 0. Then

hgtYt = h0Y0 +
∫ t

0
hgsdYs

for every predictable, locally bounded process h.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 27



Constructions of iMZ

We need only to prove that each Mu satisfies the above equation, and therefore,
that Mu is a local P-F martingale. Let

Eu
t = exp

(
−
∫ t

u

Zs

1− Zs
dAs

)
Then,

d (Eu
t (1− Zt)) = Eu

t

(
−e−ΛtdNt + ZtdVt

)
We apply the balayage formula and we obtain

Mu
t = I{gt≤u}E

u
t (1− Zt)

= I{gt≤u}(1− Zu) +

∫ t

u

I{gs≤u}E
u
s

(
−e−ΛsdNs + ZsdVs

)
= (1− Zu)−

∫ t

u

I{gs≤u}E
u
s e

−ΛsdNs

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 28



Enlargement of filtration problem solved by SDE

Enlargement of filtration problem solved by SDE

Here we study in particular the enlargement of filtration problem.

• G is a progressive enlargement of F.

• The F-local martingales remain always G-semimartingales on the interval [0, τ ].
whose semimartingale decomposition formula is given in Jeulin.

• The F-local martingales’ behaviour on the interval [τ,∞) in the filtration G
depends on the model.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 29



Enlargement of filtration problem solved by SDE

Semimartingale decomposition formula for the models constructed with
SDE(♮), in the case 1− Z > 0

We suppose
• Hy(zz) and Z∞ = 0

• for each 0 ≤ t ≤ ∞, the map u→Mu
t is continuous on [0, t], where Mu is

solution of the generating equation (♮): 0 ≤ u <∞,

(♮u)

 dMt = Mt

(
− e−Λt

1−Zt
dNt + f(Mt − (1− Zt))dYt

)
, u ≤ t <∞

Mu = 1− Zu

We prove that, for our models, the hypothesis (H′) holds between F and G and we
obtain semimartingale decomposition formula.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 30



Enlargement of filtration problem solved by SDE

Let Q be the probability on the product space [0,∞]⊗ Ω associated with the iMZ

Let X be a P-F local martingale. Then the process

X̃t = Xt −
∫ t

0

11{s≤τ}
e−Λs

Zs
d⟨N,X⟩s +

∫ t

0

11{τ<s}
e−Λs

1− Zs
d⟨N,X⟩s

−
∫ t

0

11{τ<s}(f(M
τ
s − (1− Zs)) +Mτ

s f
′(Mτ

s − (1− Zs)))d⟨Y,X⟩s

is a Q-G-local martingale.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 31



Enlargement of filtration problem solved by SDE

Sketch of the proof:

We compute directly the expectations

Q[11A11{τ≤u}(Xτ∧t −Xτ∧s)], A ∈ Fs, 0 ≤ u <∞.

Let 0 ≤ a < b ≤ s < t and A ∈ Fs.

Q[11A11{a<τ≤b}(Xt −Xs)]

= Q[11A(M
b
∞ −Ma

∞)(Xt −Xs)]

= Q[11A

∫ t

s

(−1)e−Λr

1− Zr
(M b

r −Ma
r ) d⟨N,X⟩r]

+ Q[11A

∫ t

s

(
M b

rf(M
b
r − (1− Zr))−Ma

r f(M
a
r − (1− Zr))

)
d⟨Y,X⟩r]

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 32



Enlargement of filtration problem solved by SDE

Compute separately the two terms in the right-hand side. Firstly

Q[11A

∫ t

s

(
M b

rf(M
b
r − (1− Zr))

)
d⟨Y,X⟩r]

= Q[11A

∫ t

s

(−1)e−Λr

1− Zr
(M b

∞ −Ma
∞) d⟨N,X⟩r]

= Q[11A11{a<τ≤b}

∫ t

s

(− e−Λr

1− Zr
)d⟨N,X⟩r]

For the second term

Q[11A

∫ t

s

(
M b

rf(M
b
r − (1− Zr))−Ma

r f(M
a
r − (1− Zr))

)
d⟨Y,X⟩r]

= Q[11A

∫ t

s

∫ b

a

(f(Mv
r − (1− Zr)) +Mv

r f
′(Mv

r − (1− Zr)))dvM
v
r d⟨Y,X⟩r]

= Q[11A

∫ t

s

11{a<τ≤b}(f(M
τ
r − (1− Zr)) +Mτ

r f
′(Mτ

r − (1− Zr)))d⟨Y,X⟩r]

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 33



Enlargement of filtration problem solved by SDE

It is now easy to deduce the semimartingale decomposition formula from this
computation.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 34



Enlargement of filtration problem solved by SDE

Semimartingale decomposition formula for the model constructed with
the balayage formula, the case of eventual 1− Z = 0

We suppose that Λ is continuous, Z0 = 1 and Hy(Z). We consider the iMZ

constructed above and its associated probability measure Q on [0,∞]× Ω. Let
g = limt→∞gt.

Let X be a (P,F)-local martingale. Then

Xt −
∫ t

0

11{s≤g∨τ}
e−Λs

Zs−
d⟨N,X⟩s +

∫ t

0

11{g∨τ<s}
e−Λs d⟨N,X⟩s

1− Zs−
, 0 ≤ t <∞,

is a (Q,G)-local martingale.

It is noted that the above formula has the same form as the formula for honest
time, whilst g ∨ τ is not a honest time in the filtration F.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 35



Enlargement of filtration problem solved by SDE

Proof with the SDE

The theorem can be proved in quite the same way as in the preceding theorem,
except some precaution on the zeros of 1− Z. Recall that the elements in iMZ

satisfy the equation:

Mu
t = (1− Zu)−

∫ t

u

I{gs≤u}E
u
s e

−ΛsdNs, u ≤ t <∞.

Let 0 ≤ a < b ≤ s < t and A ∈ Fs. Put aside the integrability question. We have

Q[11A11{a<g∨τ≤b}(Xt −Xs)] = Q[11A(M
b
∞ −Ma

∞)(Xt −Xs)]

= Q[11A

∫ t

s

11{gr≤b}E
b
r(−e−Λr )d⟨N,X⟩r]−Q[11A

∫ t

s

11{gr≤a}E
a
r (−e−Λr )d⟨N,X⟩r]

= Q[11A11{g∨τ≤b}

∫ t

s

(−e−Λr )

1− Zr
d⟨N,X⟩r]−Q[11A11{g∨τ≤a}

∫ t

s

(−e−Λr )

1− Zr
d⟨N,X⟩r]

= Q[11A11{a<g∨τ≤b}

∫ t

s

(−e−Λr )

1− Zr
d⟨N,X⟩r]

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 36



Predictable Representation Property

Predictable Representation Property

Assume zz and that

1. there exists an (P,F)-martingale m which admits the (P,F)-Predictable
Representation Property

2. The martingales N and Y are orthogonal

Let m̃ be the (P,G)-martingale part of the (P,G)-semimartingale m.
Then, (m̃,M) enjoys the (Q,G)-Predictable Representation Property where
Mt = 11τ≤t − Λt∧τ .

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 37



Example

Example

Let φ is the standard Gaussian density and Φ the Gaussian cumulative function, F
generated by a Brownian motion B.

Let X =
∫∞
0
f(s)dBs where f is a deterministic, square-integrable function and

Y = ψ(X) where ψ is a positive and strictly increasing function. Then,

P(Y ≤ u|Ft) = P
(∫ ∞

t

f(s)dBs ≤ ψ−1(u)−mt|Ft

)
where mt =

∫ t

0
f(s)dBs is Ft-measurable. It follows that

Mu
t := P(Y ≤ u|Ft) = Φ

(ψ−1(u)−mt

σ(t)

)
The family Mu

t is then a family of iMZ martingales which satisfies

dMu
t = −φ

(
Φ−1(Mu

t )
) f(t)
σ(t)

dBt
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The multiplicative decomposition of Zt = Nt exp
(
−
∫ t

0
λsds

)
where

dNt = Nt
φ(Yt)

σ(t)Φ(Yt)
dmt, λt =

h′(t)φ(Yt)

σ(t)Φ(Yt)

Yt =
mt − ψ−1(t)

σ(t)

The basic martingale satisfies

dMu
t = −Mu

t

f(t)φ(Yt)

σ(t)Φ(−Yt)
dBt.
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Open question: Is it possible to characterize supermartingales Z so that τ can be
constructed on Ω
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Gapeev, P. V., Jeanblanc, M., Li, L., and Rutkowski, M. (2009):
Constructing Random Times with Given Survival Processes and Applications to
Valuation of Credit Derivatives. Forthcoming in: Contemporary Quantitative
Finance Springer-Verlag 2010.

In that paper, the probability Q is constructed as a probability measure equivalent
to the solution of Cox model QC on [0,∞]× Ω associated with Λ. Define

dQ|Gt = LtdQC |Gt , 0 ≤ t <∞

where Gt = Ft ∨ σ(τ ∧ t) and Lt = ℓt11t<τ + Lt(τ)11τ≤t. If L satisfies

ℓt = Nt,

(L) : Nte
−Λt +

∫ t

0

Lt(s)e
−ΛsdΛs = 1, 0 ≤ t <∞.

where, for any s, the process (Lt(s), t ≥ s) is an F-martingale satisfying
Ls(s) = Ns, then, Q is a solution of the problem (⋆).
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Conditions: find Lt = ℓt11t<τ + Lt(τ, ·)11τ≤t such that

ℓt = Nt,

(L) : Nte
−Λt +

∫ t

0

Lt(s, ·)e−ΛsdΛs = 1, 0 ≤ t <∞.

where (Lt(s), t ≥ s) is an F-martingale satisfying Ls(s) = Ns.
• The form of L is a general form for G-adapted processes
• The condition on martingality of Lt(s), t ≥ s is to ensure that L is a G-martingale
• The condition Lt11t<τ = Nt11t<τ is stated to satisfy the projection condition
• The condition (L) is needed to satisfy the restriction condition (and implies
that L is a G-martingale).
In fact, the process Lt = ℓt11t<τ + Lt(τ, ·)11τ≤t is a G local martingale iff
Lt(s), t ≥ s and E(Lt|Ft) are F-martingales.
To solve (L) the idea is to find X and Y so that Lt(s) = XtYs and Nt = XtYt.

42



Example

Conditions: find Lt = ℓt11t<τ + Lt(τ, ·)11τ≤t such that

ℓt = Nt,

(L) : Nte
−Λt +

∫ t

0

Lt(s, ·)e−ΛsdΛs = 1, 0 ≤ t <∞.

where (Lt(s), t ≥ s) is an F-martingale satisfying Ls(s) = Ns.
• The form of L is a general form for G-adapted processes
• The condition on martingality of Lt(s), t ≥ s is to ensure that L is a G-martingale
• The condition Lt11t<τ = Nt11t<τ is stated to satisfy the projection condition
• The condition (L) is needed to satisfy the restriction condition (and implies
that L is a G-martingale).
In fact, the process Lt = ℓt11t<τ + Lt(τ, ·)11τ≤t is a G local martingale iff E(Lt|Ft)

and for any s, Lt(s), t ≥ s are F-martingales.

To solve (L) the idea is to find X and Y so that Lt(s) = XtYs and Nt = XtYt.

43



Example
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Begin at the beginning, and go on till you come to the end. Then, stop.
Lewis Carroll, Alice’s Adventures in Wonderland

This should be the end of the [talk], but not the end of research

St Augustin
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Thank you for your attention
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